BIOCONVERSION OF PROSOPIS AFRICANA BY SELECTING HIGHER FUNGI THROUGH SOLID-STATE FERMENTATION INTO VALUE-ADDED PRODUCTS

Authors

  • Victoria Omowumi Olarewaju
    University of Ilorin
  • Tope Julius Ojo
    Poznan University of Life Sciences
  • Sunday Ademola Laba
    University of Ilorin

Keywords:

Pleurotus ostreatus, Pleurotus pulmonarius, Prosopis africana, Solid-State Fermentation, Lignin Degradation, Bioconversion, Agro-Waste

Abstract

Agricultural residues such as Prosopis africana pods are abundant yet underutilized due to their high lignocellulosic content and resistance to degradation. This study evaluated their bioconversion through solid-state fermentation (SSF) using Pleurotus ostreatus, Pleurotus pulmonarius, and a mixed inoculum over 28 days. The combined fungal culture achieved the greatest lignin reduction (33.5%) while maintaining the lowest organic matter loss (2.04%), demonstrating efficient nutrient conservation and selective degradation. Proximate composition improved significantly, with crude protein increasing from 8.19% to 10.89% and crude fat also enhanced, while crude fiber declined sharply from 25.17% to 3.4%, indicating improved digestibility. Mineral analysis revealed enrichment of iron and manganese, while reductions in calcium and potassium suggested fungal utilization during metabolism. Fermentation also reduced anti-nutritional factors such as tannins, flavonoids, and phenols, with tannins declining by up to 87%, while secondary metabolites including saponins and terpenoids increased. Lignocellulose degradation was most pronounced in the mixed culture, reflecting synergistic enzyme production and confirming the efficiency of Pleurotus spp. in breaking down complex substrates. Protease activity increased consistently throughout fermentation, correlating with improved protein content and hydrolysis of complex biomolecules. Collectively, these transformations highlight the potential of Pleurotus-based SSF to convert P. africana pods into nutritionally enriched, bioactive-rich, and more digestible products. The synergistic inoculum proved particularly effective, highlighting the application of mixed fungal cultures as a sustainable strategy for developing value-added feed resources from agro-waste.

Author Biographies

Victoria Omowumi Olarewaju

Department of Microbiology, Faculty of Life Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria

 

Tope Julius Ojo

Faculty of Food Science and Nutrition, Department of Food Technology and Human Nutrition, Poznan University of Life Sciences, Poland.

Sunday Ademola Laba

Department of Microbiology, Faculty of Life Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria

Senior Lecturer

Dimensions

Abdulganiyu, G. M., Laba, S. A., Ajadi, A. E., & Aguda, B. A. (2024). Comparative study on the fungi determinants in locust beans (Iru) produced from Parkia biglobosa and Prosopis africana. FUDMA Journal of Sciences, 8(6), 299–308.

Abhishek, T., Vishal, S., & Aayushee, T. (2019). An overview of anti-nutritional factors in food. International Journal of Chemical Studies, 7(1), 2472–2479.

Adamu, M. B., Abdulkadir, N. A., Haris, G. N., Sani, A., Aminu, M. A., & Ahmad, U. B. (2025). Effect of arbuscular mycorrhizal fungi on phosphorus absorption and yield of cowpea varieties in soils of Wudil and Warawa Sudan Savannah, Nigeria. FUDMA Journal of Sciences, 9(8), 106–110.

Adenipekun, C. O., & Fasidi, I. O. (2005). Degradation of selected agricultural wastes by Pleurotus tuber-regium (Fries) Singer and Lentinus subnudus Nigerian edible mushrooms. Advance Food Science, 27(2), 61–64.

Ajiboye, A. A., Agboola, D. A., Fadimu, O. Y., & Afolabi, A. O. (2013). Antibacterial, phytochemical and proximate analysis of Prosopis africana (Linn) seed and pod extract. FUTA Journal of Research in Sciences, 1, 101–109.

AOAC. (2005). Official methods of analysis (18th ed.). Association of Official Analytical Chemists.

Arvanitoyannis, I. S., & Varzakas, T. H. (2008). Vegetable waste treatment: Comparison and critical presentation of methodologies. Critical Reviews in Food Science and Nutrition, 48, 205–247

Awogbemi, O., & Von Kallon, D. V. (2022). Pretreatment techniques for agricultural waste. Case Study Chemical Environmental Engineering, 6, 100229.

Bahram, M., & Netherway, T. (2022). Fungi as mediators linking organisms and ecosystems. FEMS Microbiology Reviews, 46(2), fuab058.

Bajpai, S., Sharma, A., & Gupta, M. N. (2005). Removal and recovery of antinutritional factors from soybean flour. Food Chemistry, 89(4), 497–501.

Bala, S., Sharma, M., Dashora, K., Siddiqui, S., Diwan, D., & Tripathi, M. (2022). Nanomaterials-based sustainable bioenergy production systems: Current trends and future prospects. Nanofabrication, 7, 314–324.

Balan, A., Murthy, V. V., & Kadeppagari, R. K. (2022). Immobilized enzymes for bioconversion of waste to wealth. In C. M. Hussain & R. K. Kadeppagari (Eds.), Biotechnology for zero waste: Emerging waste management techniques (pp. 33–46). Wiley.

Barminas, J. T., Marina, H. M., & Ali, J. (1998). Nutrient content of Prosopis africana seeds. Plant Foods for Human Nutrition, 52(4), 325–328.

Belewu, M. A., & Banjo, W. O. (1999). Biodegradation of rice husk and sorghum stover by edible mushroom (Pleurotus sajor-caju). Tropical Journal of African Science, 2, 137–142.

Carboue, Q., Rebufa, C., Hamrouni, R., Roussos, S., & Bombarda, I. (2020). Statistical approach to evaluate effect of temperature and moisture content on the production of antioxidant naphtho-gamma-pyrones and hydroxycinnamic acids by Aspergillus tubingensis in solid-state fermentation. Bioprocess and Biosystems Engineering, 43, 2283–2294.

Carpenter, D. A., O’Mara, F. P., & O’Doherty, J. V. (2004). The effect of dietary crude protein concentration on growth performance, carcass composition and nitrogen excretion in entire grower-finisher pigs. Irish Journal of Agricultural and Food Research, 43, 227–236.

Chilakamarry, C. R., Sakinah, A. M., Zularisam, A. W., Sirohi, R., Khilji, I. A., Ahmad, N., & Pandey, A. (2022). Advances in solid-state fermentation for bioconversion of agricultural wastes to value-added products: Opportunities and challenges. Bioresource Technology, 343, 126065.

Chojnacka, K., Gorazda, K., Witek-Krowiak, A., & Moustakas, K. (2019). Recovery of fertilizer nutrients from materials: Contradictions, mistakes and future trends. Renewable and Sustainable Energy Reviews, 110, 485–498.

Coe, N., Evan, T., & Worcester, D. (2005). Kidney stone diseases. The Journal of Clinical.

Coulibaly, A., Kouakou, B., & Chen, J. (2011). Phytic acid in cereal grains: Structure, healthy or harmful ways to reduce phytic acid in cereal grains and their effects on nutritional quality. American Journal of Plant Nutrition and Fertilization Technology, 1(1), 1–22.

Croan, C. S. (2000). Conversion of wood into value-added products by edible and medicinal Pleurotus. International Journal of Medicinal Mushrooms, 2, 80.

Da Luz, J. M., Nunes, M. D., Paes, S. A., Torres, D. P., da Silva, M. D., & Kasuya, M. C. (2012). Lignocellulolytic enzyme production of Pleurotus ostreatus growth in agroindustrial wastes. Brazilian Journal of Microbiology, 43, 1508–1515.

Dwivedi, S., Tanveer, A., Yadav, S., Anand, G., & Yadav, D. (2022). Agro-wastes for cost effective production of industrially important microbial enzymes: An overview. In P. Chow-Dhary, S. Mani, & P. Chaturvedi (Eds.), Microbial biotechnology: Role in ecological sustainability and research (pp. 435–460). Wiley.

El-Bakry, M., Abraham, J., Cerda, A., Barrena, R., Ponsá, S., Gea, T., & Sánchez, A. (2015). From wastes to high-value-added products: Novel aspects of SSF in the production of enzymes. Critical Reviews in Environmental Science and Technology, 45, 1999–2042.

Esteves, L. A., Monteiro, A. R., Sitanaka, N. Y., Oliveira, P. C., Castilha, L. D., Paula, V. R., & Pozza, P. C. (2021). The reduction of crude protein with the supplementation of amino acids in the diet reduces the environmental impact of growing pigs production evaluated through life cycle assessment. Sustainability, 13, 4815.

Fen, L., Xuwei, Z., Nanyi, L., Puyu, Z., Shuang, Z., Xue, Z., Pengju, L., Qichao, Z., & Haiping, L. (2014). Screening of lignocellulose-degrading superior mushroom strains and determination of their CMCase and laccase activity. Science World Journal, 2014, 763108.

Finkler, A. T. J., Weber, M. Z., Fuchs, G. A., Scholz, L. A., de Lima Luz, L. F., Krieger, N., Mitchell, D. A., & de Matos Jorge, L. M. (2021). Estimation of heat and mass transfer coefficients in a pilot packed-bed solid-state fermentation bioreactor. Chemical Engineering Journal, 408, 127246.

Glew, M., Millson, R., & Glew, R. H. (2000). Nutrient and chemical composition of 13 wild plant foods of Niger. Journal of Food Composition and Analysis, 13(1), 83–92.

Gupta, V. K., Nguyen, Q. D., Liu, S., Taherzadeh, M. J., & Sirohi, R. (2022). Microbes in valorisation of biomass to value-added products (MVBVAP). Bioresource Technology, 347, 126738.

Harborne, J. B. (1998). Phytochemical methods: A guide to modern techniques of plant analysis (3rd ed.). Springer

Helen, V., & Moctar, S. (2007). Prosopis africana (Seed Leaflet No. 132, pp. 1–2). FAO.

Jenkins, K. J., & Atwal, A. S. (1994). Effects of dietary saponins on fecal bile acids and neutral sterols, and availability of vitamins A and E in the chick. The Journal of Nutritional Biochemistry, 5(3), 134–137.

Kolapo, A. L., Okunade, M. B., Adejumobi, J. A., & Ogundiya, M. O. (2009). Phytochemical composition and antimicrobial activity of Prosopis africana against some selected oral pathogens. World Journal of Agricultural Science, 5(1), 90–93.

Kuforiji, O. O., & Fasidi, I. O. (2004). Effect of Volvariella volvacea cultivation on the components of the substrates. Journal of Applied Science, 7(3), 4292–4299.

Kumla, J., Suwannarach, N., Sujarit, K., Penkhrue, W., Kakumyan, P., Jatuwong, K., Vadthanarat, S., & Lumyong, S. (2020). Cultivation of mushrooms and their lignocellulolytic enzyme production through the utilization of agro-industrial waste. Molecules, 25(12), 2811.

Lalitha, T., Vishwanatha, S., & Venkataraman, L. (1990). Oral toxicity of Modhuca butyracea mach. saponins to albino rats. Indian Journal of Experimental Biology, 28, 642–646.

Nikmaram, N., Leong, S. Y., Koubaa, M., Zhu, Z., Barba, F. J., Greiner, R., et al. (2017). Effect of extrusion on the anti-nutritional factors of food products: An overview. Food Control, 79, 62–73.

Ogbemudia, R. E., Nnadozie, B. C., & Anuge, B. (2017). Mineral and proximate composition of soya bean. Asian Journal of Physical and Chemical Sciences, 4(3), 1–6.

Ogunjimi, L. A. O., Aviara, N. A., & Aregbesola, O. A. (2006). Some physical and engineering properties of Prosopis africana seed. Biosystems Engineering, 95(2), 197–205.

Olorunmaiye, K. S., Apeh, L. E., Madandola, H. A., & Oguntoye, M. O. (2019). Proximate and phytochemical composition of African mahogany (Afzelia africana) seed and African mesquite (Prosopis africana) pod. Journal of Applied Science and Environmental Management, 23(2), 249–252.

Oni, O. D., Oke, M. A., & Sani, A. (2020). Mixing of Prosopis africana pods and corn cob exerts contrasting effects on the production and quality of Bacillus thuringiensis crude endoglucanase. Preparative Biochemistry & Biotechnology, 50(1), 1–10.

Pathak, N., Singh, S., Singh, P., Singh, P. K., Singh, R., Bala, S., Thirumalesh, B. V., Gaur, R., & Tripathi, M. (2022). Valorization of jackfruit waste into value-added products and their potential applications. Frontiers in Nutrition, 9, 1061098.

Philip, W. A., Agbenorhevi, J. K., & Poku, D. A. (2018). Antinutrient contents of watermelon seeds. MOJ Food Processing & Technology, 6(2), 237–239.

Potu, V. C., Thadikamala, S., & Moses, R. P. (2014). Harmonizing various culture conditions and inducers for hyper laccase production by Pleurotus ostreatus PVCRSP-7 in solid-state fermentation. Journal of Pharmacy Research, 8, 526.

Qianqian, H., Xiuli, L., Guoqi, Z., Tianming, H., & Yuxi, W. (2018). Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production. Journal of Animal Science and Feed Technology, 4(2), 137–150.

Qin, C., Huang, P., Qiu, K., Sun, W., Xu, L., Zhang, X., & Yin, J. (2015). Influences of dietary protein sources and crude protein levels on intracellular free amino acid profile in the longissimus dorsi muscle of finishing gilts. Journal of Animal Science and Biotechnology, 6, 52.

Reed, J. D., McDowell, R. T., Van Soest, P. J., & Horvath, P. R. (1982). Condensed tannins: A factor limiting the use of cassava forage. Journal of the Science of Food and Agriculture, 33(3), 213–220.

Reshmy, R., Philip, E., Madhavan, A., Sirohi, R., Pugazhendhi, A., Binod, P., Awasthi, M. K., Vivek, N., Kumar, V., & Sindhu, R. (2022). Lignocellulose in future biorefineries: Strategies for cost-effective production of biomaterials and bioenergy. Bioresource Technology, 344, 126241.

Simwaka, J. E., Chamba, M. V. M., Huiming, Z., Masamba, K. G., & Luo, Y. (2017). Effect of fermentation on physicochemical and antinutritional factors of complementary foods from millet, sorghum, pumpkin and amaranth seed flours. International Food Research Journal, 24(5), 1869–1879.

Steel, R. G. D., Torrie, J. H., & Dickey, D. A. (1997). Principles and procedures of statistics: A biometrical approach (3rd ed.). McGraw-Hill

Tajudeen, A. I., Kayode, C. O., Yahya, A., & Mohammed, S. A. (2011). Development and testing of a Prosopis africana pod thresher. Australian Journal of Basic and Applied Sciences, 5(2), 759–767.

Van Soest, P. J. (1963). Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fiber and lignin. Journal of the Association of Official Agricultural Chemists, 46(5), 829–835.

Verma, A., Kumar, S., & Jain, P. K. (2011). Key pretreatment technologies on cellulosic ethanol production. Journal of Scientific Research, 55, 57–63.

Wang, Z., Song, S., Liu, J., Bai, X., Ye, G., & Liu, J. (2024). Solid-state fermentation by Aspergillus niger and Lactobacillus plantarum improved the nutritional and physicochemical properties of wheat bran and whole wheat bread.

International Journal of Food Science & Technology, 59(6), 2365–2378.

Weber, J. C., Larwanou, M., Abasse, T. A., & Kallinganre, A. (2008). Growth and survival of Prosopis africana provenances tested in Niger and related rainfall gradients in the West African Sahel. Forest Ecology and Management, 256(4), 585–592.

Wong, D. W., et al. (1988). Protease assay methods. Journal of Enzyme Inhibition, 2(1), 45–53.

Yafetto, L. (2022). Application of solid-state fermentation by microbial biotechnology for bioprocessing of agro-industrial wastes from 1970 to 2020: A review and bibliometric analysis. Heliyon, 8, e09173.

Yazid, N. A., Barrena, R., Komilis, D., & Sánchez, A. (2017). Solid-state fermentation as a novel paradigm for organic waste valorization: A review. Sustainability, 9, 224.

Zhao, Y., Tian, G., Chen, D., Zheng, P., Yu, J., He, J., Mao, X., & Yu, B. (2019). Effects of varying levels of dietary protein and net energy on growth performance, nitrogen balance and faecal characteristics of growing-finishing pigs. Revista Brasileira de Zootecnia, 48, e20180021.

Published

13-10-2025

How to Cite

Olarewaju, V. O., Ojo, T. J., & Laba, S. A. (2025). BIOCONVERSION OF PROSOPIS AFRICANA BY SELECTING HIGHER FUNGI THROUGH SOLID-STATE FERMENTATION INTO VALUE-ADDED PRODUCTS. FUDMA JOURNAL OF SCIENCES, 9(10), 318-326. https://doi.org/10.33003/fjs-2025-0910-3937

How to Cite

Olarewaju, V. O., Ojo, T. J., & Laba, S. A. (2025). BIOCONVERSION OF PROSOPIS AFRICANA BY SELECTING HIGHER FUNGI THROUGH SOLID-STATE FERMENTATION INTO VALUE-ADDED PRODUCTS. FUDMA JOURNAL OF SCIENCES, 9(10), 318-326. https://doi.org/10.33003/fjs-2025-0910-3937