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ABSTRACT

This study looks at how well machine learning (ML) methods work in cybersecurity, focusing on their ability
to tell apart malicious and normal network traffic. Using the CICIDS2017 dataset, we compare supervised
learning models like Random Forest and Support Vector Machines with unsupervised techniques such as K-
means clustering and Isolation Forest. We evaluate their performance using multiple metrics, including
accuracy, precision, recall, F1-score, and cluster validity indices, to find the most effective approach for spotting
anomalies in network data. The results show that Random Forest delivers the best overall performance,
achieving over 99.4% accuracy with very few false negatives. Meanwhile, unsupervised methods excel at
detecting new, previously unseen patterns without needing labeled data. In particular, the Isolation Forest model
achieves a recall of 93%, making it highly effective at identifying anomalies. K-means clustering also performs
well, clearly separating traffic patterns with strong Silhouette scores (0.8622) and favorable Davies-Bouldin

indices (0.6063).

Keywords: Machine Learning, Network Traffic Analysis, Anomaly Detection, Supervised Learning,

Unsupervised Learning

INTRODUCTION

The rapid growth of digital technologies has brought
unprecedented connectivity, but it has also made modern
networks increasingly vulnerable to cyber-attacks. From
financial institutions and healthcare systems to critical
infrastructure and government agencies, organizations across
all sectors face a wide range of evolving cyber threats.
Traditional rule-based security systems, while useful for
known attack signatures, often struggle to keep up with the
dynamic nature of modern cyber threats, which frequently
involve novel techniques that bypass static detection rules
(Alloghani et al., 2020)

In response to these challenges, machine learning (ML), a
branch of artificial intelligence (Al), has gained significant
attention in the field of cybersecurity such as in intrusion
detection and cyberbullying (Maikano, 2024; Sakhai &
Wielgosz, 2021). Unlike rule-based systems, ML algorithms
can learn from data, identify complex patterns, and adapt to
new types of attacks as they emerge. This flexibility makes
ML particularly well-suited for detecting anomalies and
previously unseen attack behaviors that conventional systems
may miss.

While many studies have investigated the application of ML
to intrusion detection, most focus on either supervised or
unsupervised methods in isolation, or lack direct comparisons
across different algorithm types within the same experimental
setup (Alloghani et al., 2020). As cybersecurity threats
become more sophisticated, understanding how different ML
models perform under comparable conditions is increasingly
important for building effective and adaptable defense
systems.

The primary aim of this study is to provide a comprehensive
comparative evaluation of both supervised and unsupervised
ML algorithms for network intrusion detection. Specifically,
we assess the performance of Random Forest and Support
Vector Machines as supervised models, alongside K-Means
clustering and Isolation Forest as unsupervised techniques.

The CICIDS2017 benchmark dataset, which closely simulates
real-world network environments and includes a diverse set
of contemporary attack scenarios, serves as the basis for our
analysis.

Literature Review

Machine Learning in Cybersecurity

The increasing complexity of cyber threats has driven
significant interest in artificial intelligence (Al)-based
solutions, particularly machine learning (ML), as an
alternative to traditional rule-based systems. Al encompasses
a broad set of computational technologies designed to
replicate human cognitive functions such as learning,
reasoning, and decision-making (Korteling et al., 2021).
Within this broader field, ML has gained prominence due to
its ability to autonomously extract meaningful patterns from
large datasets and continuously improve performance without
explicit programming (Kim & Park, 2021)

This adaptability makes ML particularly well-suited for
cybersecurity, where attack methods evolve rapidly and may
exhibit subtle patterns that are difficult to capture using static
detection rules. Applications of ML in this domain include
intrusion detection, malware classification, anomaly
detection, and behavioral analysis.

Supervised Learning in Cybersecurity

Supervised learning relies on labeled datasets, where each
data point is paired with a known outcome. This allows
models to learn specific mappings between input features and
target labels, making these algorithms highly effective for
well-defined classification problems (Vu et al., 2020). In
cybersecurity, supervised models are often used to classify
network traffic as either benign or malicious, based on
historical attack data (Alloghani et al., 2020).

Among supervised algorithms, decision tree-based models
such as Random Forest have proven especially effective.
Random Forest operates by combining multiple decision trees
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to form an ensemble model that improves prediction accuracy
while minimizing overfitting—an advantage when dealing
with high-dimensional network traffic data (Musleh et al.,
2023). Similarly, Support Vector Machines (SVMs) create
optimal decision boundaries to separate data classes and are
particularly effective when the data is well-separated in the
feature space (Bin Sarhan & Altwaijry, 2023)

Other supervised algorithms have also found application in
cybersecurity. Logistic Regression offers a probabilistic
framework well-suited to binary classification tasks, often
used when computational resources are limited (Jony &
Arnob, 2024). Naive Bayes classifiers, valued for their
scalability and robustness to missing data, have been widely
adopted in applications such as spam filtering, malware
detection, and anomaly detection (Chen et al., 2020).

While these supervised approaches generally deliver strong
classification accuracy when ample labeled data is available,
their effectiveness is often limited when encountering novel
or previously unseen attack patterns.

Unsupervised Learning in Cybersecurity

Unsupervised learning represents a crucial machine learning
method that analyzes unlabeled data to identify hidden
patterns and structures without predefined classifications
(Alloghani et al., 2020). Unlike supervised methods, these
algorithms autonomously discover hidden relationships
within datasets, making them particularly valuable in
cybersecurity where labeled data remains scarce and new
threats continuously emerge (Bohara et al., 2017).
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Several key algorithms demonstrate significant potential in
network security applications. Hierarchical clustering builds
nested structures that capture complex behavioral patterns,
including privilege escalation and geographically inconsistent
access attempts (Murtagh & Contreras, 2017). Meanwhile,
Isolation Forest excels at detecting anomalies in high-
dimensional data by recursively partitioning points to isolate
outliers, proving superior to traditional signature-based
methods for identifying novel threats like covert malware
communications (Tao et al., 2018). Recent progress in deep
unsupervised learning have further enhanced this field's
capabilities. Alom & Taha, (2017) demonstrated that
autoencoders and restricted Boltzmann machines can achieve
detection accuracies exceeding 91% on benchmark datasets
like KDD-99, highlighting unsupervised learning's unique
ability to process large-scale network data and adapt to
evolving threat landscapes without extensive labeled training
requirements.

MATERIALS AND METHODS

Research Framework

This study adopted a structured, four-phase methodological
framework designed to systematically evaluate supervised
and unsupervised machine learning algorithms for network
intrusion detection. The overall research design is illustrated

in Figure 1.
The framework consists of (1) data preparation, (2) data
preprocessing, (3) model implementation, and (4)

performance evaluation.

Preparing Data

L
Cleaning & Pre-
Processing

Selected Model
Training 0.7
Testing 0.3

Confusion

Evaluation

Matrix

Metrics

Figure 1: Research Methodology Framework

Tools and Development Environment
All implementations were performed using Python, a widely
adopted programming language in data science and machine
learning. Key libraries included:
i. scikit-learn for algorithm implementation and model
evaluation (Sarkar et al., 2018).
ii. Pandas for data cleaning and manipulation.
iii. NumPy for efficient numerical computation.
iv. Matplotlib for data visualization.
v. StandardScaler (from scikit-learn)
normalization.

for feature

Development was conducted in Jupyter Notebook, chosen for
its interactive coding environment, reproducibility, and
integration of code, results, and documentation (Toomey,
2016).

Dataset Selection

The CICIDS2017 dataset was selected due to its realistic
simulation of enterprise network traffic and inclusion of
diverse attack types, such as DDoS, DoS, brute-force,
infiltration, and botnet activities (Okey et al., 2023). Its
detailed labeling of attack types versus normal traffic made it
highly suitable for both supervised and unsupervised learning
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models (Maseer et al., 2021). The dataset provides a balanced
representation of malicious and benign network behavior,
allowing for robust evaluation under realistic conditions.

Data Preparation and Preprocessing
In the Data Preparation phase, raw network traffic from
multiple days and attack scenarios was consolidated into a
unified dataset.
During Preprocessing, several data quality issues were
addressed, including:

i. Handling missing values and structural inconsistencies.

ii. Removing outliers to improve model stability.

iii. Normalizing numerical features using StandardScaler
to ensure comparable scales across input features,
especially important for algorithms sensitive to feature
magnitudes.

The cleaned dataset was partitioned into 70% for model
training and 30% for testing, ensuring unbiased evaluation.

Model Development

Both supervised and unsupervised learning models were
implemented. For the Supervised Models, Random Forest
(RF) was selected for its robustness to high-dimensional data
and ability to capture complex feature interactions through
ensemble learning (Musleh et al., 2023). Support Vector
Machines (SVM) was also used because of its effectiveness
in creating optimal class separation boundaries, particularly in
binary classification contexts (Bin Sarhan & Altwaijry, 2023).
To ensure reliable performance estimates, both supervised
models were evaluated using 5-fold cross-validation.

For the unsupervised learning phase, K-means clustering and
Isolation Forest were implemented. K-means was employed
to group the network traffic into two primary clusters
representing benign and malicious behaviors, allowing the
detection of distinct behavioral patterns without prior labels.
The quality of these clusters was assessed using the Silhouette
Coefficient and Davies-Bouldin Index, which measure intra-
cluster cohesion and inter-cluster separation. Isolation Forest
was used specifically for anomaly detection, leveraging its
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strength in isolating outliers within high-dimensional feature
spaces without requiring labeled training data.

Performance Evaluation

Performance was evaluated using appropriate metrics for each
learning algorithm. For supervised models, standard
classification metrics were used, including accuracy,
precision, recall, and F1-score, providing a comprehensive
assessment of the models’ ability to correctly classify network
traffic. For unsupervised models, clustering performance was
measured using validity indices that reflect how well the
algorithms grouped similar patterns and distinguished
anomalies.

To ensure computational efficiency, Principal Component
Analysis (PCA) was applied when necessary for
dimensionality reduction, allowing the models to process
complex datasets more effectively without compromising
predictive accuracy. All experiments were conducted on a
system equipped with an Intel Core i7 processor, §GB RAM,
and running Windows 11 Pro, which provided sufficient
computational resources for the study’s machine learning
workloads.

In summary, the methodological framework applied in this
study allowed for a systematic, consistent, and practical
evaluation of both supervised and unsupervised machine
learning techniques. The design ensured that each model was
fairly tested under controlled yet realistic conditions,
providing reliable insights into their capabilities for detecting
malicious network activity.

RESULTS AND ANALYSIS

Random Forest Performance Evaluation

Evaluation Metrics

The Random Forest model demonstrated consistently strong
performance across all evaluation metrics and cross-
validation folds. Both training and validation accuracy
consistently exceeded 0.98, indicating excellent agreement
between predictions and actual traffic classifications as shown
in figure 2 below

fit_time score_time test accuracy

train_accuracy test_precision train_precision

test_recall train_recall test f1

43.828144 0.150086 0.8852 1.0

Figure 2: Random Forest Evaluation

Accuracy measurements ranging from 0.9946 to 0.9968
indicate exceptional agreement between predicted and actual
classifications. Precision values consistently above 0.98
confirm the model's reliability in positive case identification,
while recall scores demonstrate comprehensive detection of

Table 1: Random Forest Performance Analysis

0 47.184000 0.000621 0.0048 1.0 0.885870 1.0 0.ga@5820 1.0 0288175 1.0
1 28.726435 Q.109z40 0.0a50 1.0 0.200712 1.0 0.883607 1.0 0287147 1.0
2 41.240880 0.024272 00254 1.0 0.091744 1.0 0.024821 1.0 0283175 1.0
3 38.715835 0115775 0.6968 1.0 0.886E81 1.0 0.8a5858 1.0 081242 1.0

0.884808

1.0

1.0 0.887620

0.880553

true positive instances. The harmonic mean represented by
Fl-scores, also maintaining values above 0.98, further
validates the model's balanced performance in both precision
and recall domains. Table 1 below summarizes the evaluation
for the random forest algorithm.

Metric Performance Key Observations

Accuracy  0.9946 - 0.9968 across all folds  Consistently high accuracy indicating excellent classification capability
Precision > (.98 across all folds High reliability of positive predictions, indicating minimal false positives
Recall > (.98 across all folds Excellent capture of attack instances, with very few missed attacks
F1-Score > (.98 across all folds Well-balanced precision and recall, confirming overall effectiveness
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Random Forest Confusion Matrix Analysis

The confusion matrix analysis as shown in Figure 3 provided
nuanced insights into the Random Forest classifier's
performance that extended beyond aggregate accuracy
metrics. The model demonstrated exceptional discriminative

out[2&]:

True label
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capability, correctly identifying 6,035 normal traffic instances
(True Negatives) and 1,412 attack cases (True Positives),
indicating strong pattern recognition for both classification
categories.

<sklearn.metrics._plot.confusion_matrix.ConfusicnMatrixDisplay at exl3segsdsoces

6000

5000

Predicted label

Figure 3: Random Forest Confusion Matrix

While the observed False Positive rate of 36 instances
represents a relatively small proportion (0.5% of normal
traffic), these misclassifications may warrant consideration in
operational environments where false alarms could impact
system usability. More critically, the minimal False Negative
count (17 instances) suggests robust security coverage, with
fewer than 1.2% of attacks going undetected - a crucial factor
for mission-critical systems. The overall performance metrics,
with correct classifications exceeding 99% of evaluated cases,
position this model as highly effective for production
deployment.

out[3e]:

Support Vector Machine Evaluation

The Support Vector Machine (SVM) model demonstrates
strong performance in classifying network traffic, as
evidenced by comprehensive cross-validation results. Across
all five validation folds, the model maintains consistently high
accuracy scores above 0.95 as shown in figure 4, indicating
excellent agreement between predicted classifications and
actual labels. This robust performance suggests the SVM
effectively learns the distinguishing patterns between attack
and normal traffic within the CICIDS2017 dataset.

fit_time score_time test accuracy train_accuracy test precisiom train_precision test_recall train_recall test f1  train_f1
0 7.253025 2058632 0.8560 0.88075 0.887058 0.820932  0.575000 0.874003 0.335302 0.596580
1 5.000108 Z.078912 0.8588 0.85205 0.808187 0.818233  0.832172 O.ET1447 0885476 0.884702
2 5554034 2387108 0.8588 0.08055 0.814871 0.818143  0.888877 0878056 0821307 0.506506
3 8791842 1.887838 0.8438 085225 0.835378 0.814876  0.575000 0872471 0804132 0.883171
4 4255503 1.865348 0.8570 0.08010 0.824275 0.814T87  0.342538 0877305 0835333 0.505650

Figure 4: SVM Result Evaluation

A deeper analysis of classification metrics reveals important
insights into the model's behavior. Precision values ranging
from 0.87 to 0.93 across folds indicate the model correctly
identifies most attack instances, though the variation suggests
some susceptibility to false positives in certain data segments.
The recall metrics, consistently exceeding 0.86, demonstrate

Table 2: Support Vector Machine Performance Analysis

the model's ability to capture the majority of actual attack
cases. These findings are further supported by F1-scores
between 0.87 and 0.90, which reflect a balanced performance
between precision and recall. The evaluation metric for SVM
is summarized in table 2 below.

Metric Performance Key Observations

Accuracy >0.95 across all folds Good overall classification performance

Precision 0.87 - 0.93 across folds Generally reliable positive predictions with some variation

Recall > (.86 across all folds Good identification of attack instances with room for improvement
F1-Score 0.87 - 0.90 across folds Solid balance between precision and recall
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SVM Confusion Matrix Interpretation

The confusion matrix analysis as shown in Figure 5 reveals
critical insights into the SVM model's classification behavior
on the CICIDS 2017 dataset. The model demonstrates
particularly strong performance in identifying legitimate
network activity, with 5,929 true negatives correctly
classified as normal traffic. This represents a 98.8% success
rate for benign traffic identification, suggesting the model
effectively learns the characteristics of typical network
behavior.

True label
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From a security perspective, the 190 false negatives (2.5% of
attack instances) warrant careful consideration, as these
represent undetected threats that could compromise system
integrity. While the model correctly identifies 1,258 true
positives (86.9% of attack cases), the false negative rate
suggests potential limitations in detecting certain attack
patterns. The 123 false positives (2.0% of normal traffic)
indicate occasional misclassification of benign activity as
malicious, which could impact operational efficiency through
unnecessary alerts.

5000
0- 5929

4000

3000

2000
1

1000

0 1

Predicted label
Figure 5: Confusion Matrix for SVM

When compared to the previously evaluated Random Forest
model, the SVM shows a higher false negative rate (190 vs 17
instances), suggesting reduced sensitivity to certain attack
signatures. This performance difference highlights potential
areas for model refinement, including Kernel function
optimization to better capture complex attack patterns,
Feature space enhancement to improve discriminative
capability, Class weight adjustment to prioritize attack
detection sensitivity and Decision boundary calibration for
operational requirements

The overall classification accuracy of 95.8% (7,187 correct
classifications out of 7,500) demonstrates the model's
fundamental effectiveness, while the observed error patterns

Table 3: Isolation Forest Performance Analysis

provide clear direction for targeted improvements in security-
sensitive applications.

Isolation Forest Evaluation

Isolation Forest excelled in anomaly detection with
remarkable recall performance (93.0%), successfully
capturing most actual anomalies in the dataset. The precision
of 82.8% indicates reasonable accuracy with some false
alarms, resulting in an Fl-score of 0.876. This recall-
prioritized performance profile aligns well with security
applications where comprehensive threat identification
outweighs false alarm concerns. Table 3 below summarizes
the evaluation metric of the Isolation Forest performance
analysis.

Metric Performance Key Observations

Precision 0.828 Good but not excellent; 82.8% of anomaly predictions were correct
Recall 0.930 Excellent capture of actual anomalies; 93% of all anomalies detected
F1-Score 0.876 Good balance between precision and recall

This evaluation demonstrates that while the Isolation Forest
may benefit from refinement to reduce false positives, its
exceptional anomaly detection capability makes it a
compelling choice for security monitoring systems where
comprehensive threat identification is critical. The model's
architecture appears fundamentally sound for network
security applications, with tuning opportunities available to
adapt it to specific operational contexts.

K-Means Clustering Evaluation

K-Means demonstrated exceptional unsupervised
performance through rigorous validation metrics: Silhouette
score of 0.8622 (near-optimal cluster separation), Calinski-

Harabasz index of 48,526 (excellent between-cluster
variance), and Davies-Bouldin index of 0.6063 (strong cluster
distinctiveness). These convergent metrics confirm effective
separation of normal and malicious traffic patterns without
labeled data.

Discussion

The study reveals individual algorithm strengths aligned with
specific operational requirements. Random Forest emerged as
the superior supervised approach, achieving the highest
accuracy (>99.4%) with remarkable attack detection
capability (98.8% recall) and minimal false alarms. Its
consistent performance across validation folds demonstrates

FUDMA Journal of Sciences (FJS) Vol. 9 No. 10, October, 2025, pp 348 — 354

(O8]

)



MACHINE LEARNING DRIVEN NETWORK...

robust generalization, making it ideal for environments with
well-labeled datasets and known threat signatures.

Among unsupervised methods, both algorithms showed
complementary capabilities. K-Means excelled at traffic
pattern separation with computational efficiency, making it
suitable for baseline monitoring in resource-constrained
environments. Isolation Forest's high recall (93%) positions it
as valuable for detecting novel or evolving threats that
supervised methods might miss, despite generating more false
positives.

The comparative analysis emphasizes critical trade-offs
between detection accuracy, computational efficiency, and
adaptability. Supervised methods excel with labeled data and
known attack patterns, while unsupervised approaches
provide flexibility for emerging threats without extensive
training requirements. Future research should explore hybrid
architectures that combine Random Forest for primary threat
detection with Isolation Forest for novel anomaly
identification, capitalizing on their complementary strengths
to achieve comprehensive network security coverage.

CONCLUSION

This comprehensive evaluation of machine learning
approaches for cybersecurity using the CICIDS2017 dataset
reveals distinct performance characteristics across supervised
and unsupervised methods, with Random Forest achieving
exceptional classification accuracy (>99.4%) and minimal
false negatives (17 out of 1,429 attacks), while Support
Vector Machines maintained respectable performance
(>95%) but with higher false negative rates (190 instances).
Among unsupervised methods, Isolation Forest demonstrated
strong anomaly detection capabilities with 93% recall, and K-
means clustering showed effective traffic pattern separation
with favorable computational efficiency. The analysis
highlights critical trade-offs between detection accuracy,
computational resources, and adaptability, suggesting that
hybrid architectures combining these complementary
strengths offer optimal solutions—with Random Forest
serving as primary detection for well-labeled environments,
supported by Isolation Forest for novel threat identification,
while resource-constrained or label-limited contexts benefit
from K-means baseline monitoring enhanced by Isolation
Forest anomaly detection. Future research should focus on
advanced ensemble frameworks integrating multiple learning
paradigms and investigating temporal model stability, as
increasingly sophisticated cyber threats necessitate robust
ML-based detection systems that leverage diverse algorithmic
approaches for comprehensive network security.
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APPENDIX

Evaluation

In [23]: # Calculate evaluation metrics
precision = precision_score(testing_labels, anomaly_scores)
recall = recall_score(testing_labels, anomaly_scores)
fl = f1_score(testing_labels, anomaly_scores)

print("Precision:", precision)
print("Recall:", recall)
print("F1 score:", f1)

Precision: ©.8345284059569774
Recall: ©.9365521510368306
F1l score: ©.8826017208691848

In [3@]: results = {"Precision": precision, "Recall": recall, "F1 score": f1}
index = ["Metrics"]
results = pd.DataFrame(results, index=index)

In [31]: results

Out[31]:
Precision Recall F1score

Metrics 0.834528 0.936552 0.882602

Figure 6: Isolation Forest Result Evaluation

In [10]: # Calculate evaluation metrics
silhouette_avg = silhouette_score(data, labels)
ch_index = calinski_harabasz_score(data, labels)
db_index = davies_bouldin_score(data, labels)

print("Silhouette score:", silhouette_avg)
print("Calinski-Harabasz index:", ch_index)
print("Davies-Bouldin index:", db_index)

Silhouette score: ©.8622363933400274
Calinski-Harabasz index: 48526.884238398365
Davies-Bouldin index: ©.6862838469451424

In [35]: results = {"Silhouette score": silhouette_avg, "Calinski-Harabasz index": ch_index, "Davies-Bouldin index": db_index}
index = ["Metrics"]
results = pd.DataFrame(results, index = index)
results

out[35]:
silhouette score Calinski-Harabasz index Davies-Bouldin index

Metrics 0.862236 48526.00423 0.606284

Inl 1:
Figure 7: K-Means Evaluation
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